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This paper utilizes the most flexible skewed generalized t (SGT) distribution for describing
petroleum and metal volatilities that are characterized by leptokurtosis and skewness in order
to provide better approximations of the reality. The empirical results indicate that the
forecasted Value-at-Risk (VaR) obtained using the SGT distribution provides the most accurate
out-of-sample forecasts for both the petroleum and metal markets. With regard to the
unconditional and conditional coverage tests, the SGT distribution produces the most
appropriate VaR estimates in terms of the total number of rejections; this is followed by the
nonparametric distribution, generalized error distribution (GED), and finally the normal
distribution. Similarly, in the dynamic quantile test, the VaR estimates generated by the SGT
and nonparametric distributions perform better than that generated by other distributions.
Finally, in the superior predictive test, the SGT distribution has significantly lower capital
requirements than the nonparametric distribution for most commodities.
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1. Introduction

Most time series are characterized by leptokurtosis and skewness, not only with regard to financial assets (Bollerslev, 1987;
Engle and Gonzales-Rivera, 1991; Ait-Sahalia and Lo, 1998; Theodossiou and Trigeorgis, 2003; Bali and Theodossiou, 2007), but
also with regard to energy assets (Solt and Swanson, 1981; Taylor, 1998; Giot and Laurent, 2003a; Chan et al., 2007; Fan et al.,
2008). Historically, commodity prices have been the most volatile among all international prices. Often, the volatility of
commodity prices has exceeded that of exchange and interest rates (Kroner et al., 1995). However, relatively little research has
been conducted on modeling and estimating volatilities in alternative assets using non-normal distributions. For example, Giot
and Laurent (2003a), Chan et al. (2007), Fan et al. (2008), and Hung et al. (2008) comprise the limited body of work that calculates
the Value-at-Risk (VaR) of commodity assets in oil markets using non-normal distributions. Amajority of the studies that measure
the volatility of oil returns do so with normal distributions (Sadeghu and Shavvalpour, 2006). In the gold market, the available
quantitative literature is very limited, too. Casassus and Collin-Dufresne (2005) recently evaluated the VaR for gold by using a
three-factor model. When participating in commodity markets, it is crucial to describe asset prices. However, no appropriate
method is available for this purpose. Volatility is the principal factor on which economic and financial models of pricing and
hedging can be developed; moreover, estimations made under correct specifications of the conditional distribution are more
efficient. In this paper, we utilize the most flexible distribution to describe the petroleum and metal volatilities characterized by
leptokurtosis and skewness.

The application of the VaR methodology offers comprehensive and recapitulative advantages for measuring market risk.
Portfolio VaR is often calculated on the basis of the variance–covariance approach, and the models that are used most often in this
18.
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regard are the classical autoregressive conditional heteroscedasticity (ARCH)/generalized ARCH (GARCH) models based on
conditional Gaussian innovations (see Engle, 1982; Bollerslev, 1986). However, empirical evidence has demonstrated that the
conditional normal time series models are inadequate for estimating the tail quantiles of conditional return distributions.
Substantial empirical evidence reveals that the distribution of financial returns is typically skewed, peaked around the mean
(leptokurtic), and characterized by fat tails. Bollerslev et al. (1994) proposed that leptokurtosis may be reduced—but not
eliminated—when returns are standardized using time-varying estimates for means and variances. This prompts the gradual
adoption of models with heavy-tailed innovations in risk modeling. Numerous extensions have been proposed for the classical
GARCH models with heavy-tailed innovations.

Student's t, generalized error distribution (GED), and a mixture of two normal distributions are frequently used for describing
the non-normal characteristics in the VaR literature. With regard to the commodity markets, Giot and Laurent (2003a) compared
the performance of the RiskMetrics, skewed Student asymmetric power GARCH (APGARCH), and skewed Student ARCH models
for several commodities. They found that the skewed Student ARCH model delivered excellent results and was relatively easy to
use. Chan et al. (2007) considered a GARCHmodel with heavy-tailed innovations and characterized the limiting distribution of an
estimator of the conditional VaR, which corresponds to the external quantile of the conditional distribution of the GARCH process.
Fan et al. (2008) estimated the VaR of the returns inWest Texas Intermediate (WTI) and Brent crude oil spot markets using a GED-
GARCH model. They found this approach to be more realistic and comprehensive than the commonly used standard normal
distribution-based VaR model, and also more effective than the well-recognized historical simulation with autoregressive moving
average (ARMA) forecasts. Hung et al. (2008) investigated the fat-tailed innovation process on the VaR estimates, and the
empirical results showed that the GARCH-HT model is quite accurate and efficient in estimating the VaR for energy commodities.

However, because such distributions partially deal with the issues of leptokurtosis and skewness, they cannot fully correct the
measurement bias in risk problems (Bali and Theodossiou, 2007). The skew generalized t (SGT) distribution, introduced by
Theodossiou (1998), is a skewed extension of the generalized t distribution, originally proposed by McDonald and Newey (1988).
The SGT is a distribution that allows for a very diverse level of skewness and kurtosis, and it has been used to model the
unconditional distribution of daily returns for a variety of financial assets (Theodossiou, 1998; Harris and Kucukozmen, 2001).
Furthermore, the SGT nests several well-known distributions such as the generalized t (GT) of MacDonald and Newey (1988); the
skewed t (ST) of Hansen (1994); the skewed generalized error distribution (SGED) of Theodossiou (2001); and the normal,
Laplace, uniform, GED, and Student t distributions. Harris et al. (2004) further found that a conditional SGT distribution offers a
substantial improvement in the fit of the GARCHmodel for stock index assets. Bali and Theodossiou (2007) proposed a conditional
technique for estimating the VaR and expected shortfall measures on the basis of the SGT distribution in the S&P 500 index returns.
They found that GARCH-type models with the SGT distribution are much superior to the conditional normal distribution for all
GARCH specifications and all probability levels. Bali et al. (2008) also used the SGT distribution with time-varying parameters to
provide an accurate characterization of the tail of the standardized equity return distributions. To fill in the gap in the inadequate
research in which the SGT distribution in non-normal commodity returns has been employed, we use the GARCH-SGT model to
model the commodity volatilities. The analytical and empirical results in this paper could provide better approximations of reality.

The remainder of this paper is organized as follows. Section 2 describes the reason for focusing on the petroleum and metal
markets. Section 3 presents the methodologies of the GARCH-SGT models and the measurement of the VaR. Section 4 compares
the out-of-sample empirical results of the SGT and the normal distribution and GED. Section 5 concludes the paper.

2. Importance of oil and metal markets

Energy is fundamental to the quality of our lives, and it is a key aspect in all sectors of modern economies. Crude oil, gasoline,
and heating oil are three of the most important assets in energy markets. One of the characteristics of petroleum market prices is
volatility, which is both high and variable over time. In general, oil prices have become more volatile since 1986 (Plourde and
Watkins, 1998; Lynch, 2002; Regnier, 2007), and this volatility has had a significant impact on the global economy (Lee et al., 1995;
Ferderer, 1996; Sadorsky, 1999, 2006). A traditional demand-based framework was unable to explain the marked deterioration in
commodity and oil prices (Chaudhuri, 2001).

In this paper, we also examine the volatility behavior of three metal assets: gold, silver, and copper. These commodities, which
are among the most traded commodities in the world commodity markets, have different economic uses. Of all the precious
metals, gold and silver are the most popular avenues of investment. Silver often tracks gold prices due to store of value demands,
although there may be a variation in the ratio. Recently, the prices of gold and silver have risen rather steeply due to credit crunch
effects. Copper, which is the third metal asset that is analyzed in this paper, is not a precious metal and it is often referred to as the
“metal with a PhD in economics” because its price tends to reflect changes in the business cycle (Lahart, 2004). A majority of
studies have reported the relationship between metals and macroeconomic variables (Sherman, 1983; Baker and Van-Tassel,
1985; Kaufmann and Winters, 1989; Sjaastad and Scacciavillani, 1996; Taylor, 1998; Christie-David et al., 2000; Cai et al., 2001;
Tully and Lucey, 2006).

To our knowledge, relatively little work has been conducted on modeling and estimating volatilities in alternative assets by
using non-normal distributions. In order to address the ambiguous empirical results with regard to measuring the VaR in the
petroleum and metal markets, this paper provides a comprehensive analysis using the flexible SGT distribution for modeling
volatilities for six assets: crude oil, gasoline, heating oil, gold, silver, and copper.

Existing research in the petroleum andmetal markets is extended through this paper in four important ways. First, we calculate
the VaR on the basis of the SGT—a distribution that permits for a very diverse level of skewness and kurtosis—for modeling the
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distribution of commodity returns. The normal distribution and GED are comparable models that are used to assess the robustness
of the SGT distribution. Second, considering the behavior of highly volatile assets, we employ GARCH models for estimating the
time-varying conditional variance of returns. Third, we analyze the time-varying scaling parameters of the six abovementioned
assets. The analysis will reveal why traditional distributions are not appropriate for estimating volatilities and forecasting VaR.
Fourth, we investigate the volatility in the prices—both spot and futures—of the aforementioned six assets. In addition, we analyze
the performance of out-of-sample forecasting for a long period, encompassing both stable and high-fluctuation periods, including
the period of the current global financial crisis. It is found that the VaR in the SGT distribution is significantly superior to that
obtained from other distributions.

3. Methodology

3.1. GARCH(1,1) model with skewed generalized t distribution (GARCH-SGT)

This paper investigates GARCH(1,1) model in computing the conditional means and conditional variances for conditional VaR
analysis. The GARCH(1,1) model proposed by Bollerslev (1986) is as follows:
where
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Considering the non-normal characteristics of energy assets, the conventional GARCH-normal model fails to capture the
behavior of high volatility of petroleum and metal assets. SGT distribution, advanced by Theodossiou (1998), is displaced for well-
describing the distribution of asset returns exhibiting skewness and leptokurtosis. The probability density function for the SGT
distribution can be represented as follows:
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λ is a skewness parameter, “sign” is the sign function, B(·) is the beta function, and δ is the Pearson's skewness andmode of
he scaling parameters n, κ and λ obey the following constraints: nN2, κ N0 and−1bλb1. The skew parameter λ controls the
f descent of the density around the mode of z. In the case of positive skewness (λN0), the density function is skewed to the
In contrary, the density function is skewed to the left with the negative skewness (λb0). The parameters n and κ control the
d height of the density. Smaller values of κ and n result in larger values for the kurtosis (i.e. more leptokurtosis p.d.f.s) and
ersa. The SGT distribution nests several well-known distributions, as reported in Table 1.
3.2. Measurement and evaluation for distribution-based VaR models

3.2.1. Definition and estimation
Under the framework of the parametric techniques (Jorion, 2000), the conditional VaR estimate for a one-day holding period is

obtained as follows:
VaRt + 1 = zα· σ̂t + μ t ð4Þ

zα denotes the corresponding quantile of the distribution of the standardized returns at a given confidence level 1−α. For
where
example, in the normal distribution, the value of the threshold for confidence level 99% is constant and equal to−2.326. However,
in more general case of the SGT, the threshold value is a function of the skewness and kurtosis parameters λ, n and κ. According to



1 See footnote 17 in Bali and Theodossiou (2007).
2 The authors would like to thank an anonymous referee for suggesting the motivation for using historical simulation method to calculate the nonparametri

distribution-based VaR.
3 The GARCH(1,1) model is chosen as the filter while implementing filtered historical simulation.

Table 1
The special cases of SGT distributions.

λ κ n Notes

Skew generalized t (SGT) Free Free Free λN0 skew to the right
Skew t (ST) Free 2 Free λb0 skew to the left
Skew GED (SGED) Free Free ∞
Skew normal Free 2 ∞ κN2 thinner tail than normal
Skew Laplace Free 1 ∞ κb2 thicker tail than normal
General t (GT) 0 Free Free
Student t 0 2 Free
GED 0 Free ∞
Normal 0 2 ∞
Cauchy 0 2 1
Laplace 0 1 ∞
Uniform 0 ∞ ∞
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Bali and Theodossiou (2007), the quantiles of the SGT distribution with various combinations of shape parameters are calculated
with numerical integration technique1.

3.3. Nonparametric distribution-based VaR model

In contrast to parametric distribution-based VaR models, we use the filtered historical simulation method (Hull and White,
1998; Christoffersen, 2003) to extend this paper to investigate nonparametric distribution-based VaR2. The historical simulation
discards particular assumptions regarding the return series and calculates the VaR from the immediate past history of the returns
series (Dowd, 1998). The filtered historical simulationmethod is designed to improve on the shortcomings of historical simulation
by augmenting the model-free estimates with parametric models3. Even if Pritsker (2006) asserts that filtered historical
simulation method compares favorably with historical simulation, the historical simulation method may not avoid the many
shortcomings of purely model-free estimation approaches. When historical return series include insufficient extreme outcomes,
the simulated VaR may seriously underestimate the actual market risk.

3.4. Unconditional and conditional coverage tests

A “failure” occurred if the return on day t+1 is less the VaR computed on day t, that is, rt + 1b υ̂t . Intuitively, a “good” VaR
estimator υ̂twould be such that Prðrt + 1b υ̂tÞ is close to p. The indicator variable is set as follows,
It =
1; if rt + 1b υ̂t

0; otherwise:

8<
: ð5Þ
The stochastic process {It} is called the failure process. The VaR forecasts are said to be efficient if they display correct
conditional coverage, that is, E(It|t−1)=p∀ t. Kupeic (1995) develops a test for correct unconditional coverage in the likelihood
ratio (LR) framework. The likelihood ratio statistics are as follows:
LRuc = � 2log
pn1 ð1� pÞn0
π̂n1 ð1� π̂Þn0

" #
∼ χ2

ð1Þ ð6Þ

p is the tolerance level where VaR measures are estimated, n1 (n0) is the number of 1 (0) in the indicator series, and
where
π̂= n1 = ðn1 + n0Þ, the MLE estimate of p. The null hypothesis of the failure probability p is tested against the alternative
hypothesis that the failure probability is different from p.

Although the LRuc test can reject a model that either overestimates or underestimates the true but unobservable VaR, it cannot
examine whether the exceptions are randomly distributed. In a risk management framework, it is of paramount importance that
VaR exceptions be uncorrelated over time, which prompts independence and conditional coverage tests based on the evaluation of
interval forecasts. Christoffersen (1998) developed a ‘conditional coverage’ test (LRcc) that jointly investigates whether the total
number of failures is equal to the expected one, and the VaR exceptions are independently distributed. In particular, the advantage
of Christoffersen's procedure is that it can reject a model that generates either too many or too few clustered exceptions. Since
accurate VaR estimates exhibit the property of correct conditional coverage, the It series must exhibit both correct unconditional
c
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coverage and serial independence. The LRcc test is a joint test of these two properties, and the corresponding test statistics are
LRcc=LRuc+LRind as we condition on the first observation. Consequently, under the null hypothesis that the failure process is
independent and the expected proportion of exceptions equals p, the appropriate likelihood ratio is represented as follows:
4 In t
3.75 an
LRcc = −2log
ð1−pÞn0pn1

ð1− π̂01Þn00 π̂n01
01 ð1− π̂11Þn10 π̂

n11
11

∼ χ2
ð2Þ ð7Þ

ni,j=thenumberofobservationswithvalue i followedbyvalue j (i, j=0,1),πij=P{It= j|It−1= i} (i, j=0,1), π̂01=n01/(n00+n01),
where
π̂11=n11/(n10+n11).

3.5. Dynamic quantile test

Engle and Manganelli (2004) provide the dynamic quantile (DQ) test to correct for the inefficiency in the conditional coverage
test of Christoffersen (1998). We define a sequence of indicator variables as
Hitt = I rtb υ̂tðθÞð Þ−θ ð8Þ

Hitt is an indicator function, and θ=1−α is a given confidence level. Engle and Manganelli (2004) suggest to test jointly
where
that: (1) E(Hitt)=0; (2) Hitt is uncorrelated with variables included in the information set. These two tests can be done using
artificial regression Hitt=XB+ɛt, where X is an N×kmatrix whose first column is a column ones, and the remaining columns are
additional explanatory variables. We include five lags of Hitt and the current VaR as the explanatory variables. Engle and
Manganelli (2004) show that under the null hypothesis, the dynamic quantile test statistic DQ = B̂′X′X B̂

θð1−θÞ, where B̂ is the OLS
estimate of B. The DQ test statistic has an asymptotic Chi-square distribution with seven degrees of freedom χ(7)

2 .

3.6. Regulatory loss function

Under the 1996 Market Risk Amendment (MRA) to the Basel Capital Accord, regulatory capital for the trading positions of
commercial banks is set according to the banks' own internal VaR estimates. Given its actual use by market participants, the
regulatory loss function implied in the MRA is a natural way to evaluate the relative performance of VaR estimates within an
economic framework; see Lopez (1999) for further discussion.

The market risk capital (MRC) loss function expressed in the MRA is specified as
MRCt = max VaRtð10; 99%Þ; St
60

∑
59

k=0
VaRtð10; 99%Þ

" #
ð9Þ

VaRt(10, 99%) is the VaR estimate of 99% confidence level generated on day t for a 10-day holding period and expressed in
where
return, St is the MRA's multiplication factor (i.e., from 3 to 4 depending on the number of exceptions over the past 250 days4). That
is, MRCt is the amount of regulatory capital a bank must hold with respect to its market risk exposure. The MRA capital loss
function has several elements that reflect the bank regulators' concerns.

3.7. Superior predictive ability (SPA) test

Consider l+1 different portfolios Mk for k=1,…,l and which are discussed in the previous section. M0 is the benchmark
portfolio and the null hypothesis is that none of the portfolio k=1,…,l outperforms the benchmark in terms of the regulatory loss
function chosen. For each portfolioMk, we generate n VaR forecast VaRk,t for t=1, 2,…, n. For every forecast, we generate the loss
function Lk,t describing as follows. Let Lk,t≡MRCk,t denote the function as defined in Eq. (9). The performance of model k relative to
the benchmark model (at time t), can be defined as:
fk;t = L0;t−Lk;t for k = 1;2;…;ℓ; t = 1;2;…;n: ð10Þ
Assuming stability for fk,t, we can define the expected relative performance of model k relative to the benchmark as μk=E[fk,t]
for k=1,2,…,ℓ. If models outperform the benchmark one, then the value of μk will be positive. Therefore, we can analyze whether
he green zone, the multiplier value is 3 for exceptions from 0 to 4; in the yellow zone, the multiplier values for five through nine exceptions are 3.4, 3.5
d 3.85, respectively; in the red zone, the multiplier value is 4 while exceptions are above 10.
,



Fig. 1. Kurtosis parameter for petroleum futures in the GED distribution.

Table 2
Descriptive statistics of spot and futures returns.

Mean S.D. Skewness Excess kurtosis J–B test

Panel A. Spot
WTI 0.011 2.661 −0.808* 14.719* 53049.959*
Gasoline 0.027 2.857 0.036 2.773* 1209.054*
Heating 0.026 2.660 −1.630* 36.558* 331507.245*
Gold 0.017 1.614 −0.218* 20.335* 100085.930*
Silver 0.016 1.721 −0.536* 8.525* 18132.181*
Copper 0.004 1.724 −0.088* 4.974* 5297.468*

Panel B. Futures
WTI 0.011 2.587 −0.843* 14.682* 52841.263*
Gasoline 0.016 2.553 −0.550* 8.811* 20502.307*
Heating 0.011 2.355 −1.467* 19.369* 119903.726*
Gold 0.017 1.017 0.016 7.694* 14321.981*
Silver 0.017 1.731 −0.649* 8.055* 13392.968*
Copper 0.014 1.645 −0.217* 5.331* 5756.973*

Note: J–B test is Jarque–Bera normality test. * represents significance at the 5% significance level.
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any of the competing models significantly outperform the benchmark, testing the null hypothesis that μk≤0, for k=1, 2,…,ℓ.
Consequently, the null hypothesis that none of models is better than the benchmark (i.e. no predictive superiority over the
benchmark itself) can be formulated as:
H0 : μmax≡ max
k=1;⋯;ℓ

μk≤0: ð11Þ
The associate test statistic proposed by Hansen (2005) is given by
T = max
k=1;⋯;ℓ

ffiffiffi
n

p
fk

ω̂kk

ð12Þ

2
kk as a consistent estimate of ωkk

2 , and where fk = n−1∑n
t = 1fk;t , ω

2
kk = lim

N→∞
var

ffiffiffi
n

p
f k

� �
. A consistent estimator of ωkk and
with ω̂

p-value of test statistic T can be obtained via a stationary bootstrap procedure of Politis and Romano (1994). More details of this
procedure are detailed in Hansen (2005) and Hansen and Lunde (2005).

4. Empirical results

4.1. Data and descriptive statistics

This paper calculates the daily VaR for spot and futures returns on West Texas Intermediate (WTI) crude oil, gasoline,
heating oil, gold, silver, and copper for the period January 2002 to March 2009. All the spot prices for WTI crude oil, New York
harbor reformulated regular gasoline, and #2 heating oil as well as the relative futures price trading on the NYMEX were
obtained from the U.S. Energy Information Administration (EIA). Moreover, the spot prices for New York gold, silver, and



Fig. 2. Kurtosis and skewness parameters for petroleum futures in the SGT distribution.
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copper and the relative futures prices trading on the COMEX were obtained from the ShareLynx database. The asset returns are
logarithmic returns. The descriptive statistics for the six assets are presented in Table 2. First, we observed that the
unconditional standard deviations of the oil assets were higher than those of the metal assets. For example, in the spot market,
the standard deviations of WTI, gasoline, and heating oil are 2.661, 2.857, and 2.660, respectively; these values are relatively
higher than the standard deviation of the metal assets at 1.614, 1.720, and 1.724 for gold, silver, and copper, respectively. The
same results are found for the futures markets: except for gasoline spot and gold futures, the skewness statistics are negative
and significant at the 5% level, thereby indicating that the assets' returns are significantly skewed to the left. With respect to the
excess kurtosis statistics, all the values are significantly positive, thereby implying that the distribution of returns has larger,
thicker tails than the normal distribution. Similarly, the Jarque–Bera statistic is large and significant, thereby implying that the
assumption of normality is rejected.

image of Fig.�2


Fig. 3. Kurtosis parameter for metal futures in the GED distribution.
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4.2. Time-varying scaling parameters

In this paper, the predicted one-day-ahead VaR is based on a rolling window out-of-sample procedure. Figs. 1 to 4 illustrate the
time-varying scaling parameters in the GED and SGT distribution for futures returns.5 Two vertical lines are drawn: The solid line
indicates the values as on August 9, 2007, and the dotted line indicates the values as in September 2008. The former date indicates
the beginning of the global financial crisis, which resulted in a liquidity crisis that prompted a substantial injection of capital into
the financial markets by the United States Federal Reserve, the Bank of England, and the European Central Bank. In September
2008, the crisis deepened, as stockmarkets worldwide crashed and entered a period of high volatility, and a large number of banks,
mortgage lenders, and insurance companies failed in the subsequent weeks. In the part of Fig. 1 indicating the GED for petroleum
futures, we can see that the fat-tail parameter (κ) is below 2 and downward gradually in the forecasting period, indicating that the
fat-tail exists in the oil returns. However, the fluctuation of the parameter κ is not large, except in the global financial crisis period
when it is comparatively low. In comparison, an observation of the scaling parameters of the SGT distribution in Fig. 2 shows that
the skewness parameter λ is negative for WTI crude oil and gasoline and positive for heating oil; however, the values are smooth
around 0, thus indicating that the skewness is not very important. The two kurtosis parameters (κ and n) perform differently in the
forecasting period. The first parameter, κ, is very smooth and the average value is close to that of the normal distribution (i.e., 2),
indicating no peakness for the empirical distribution. The second parameter controlling the fat-tail characteristic, n, on the other
hand, is more volatile, but the value is not large. By definition, the smaller values of κ and n result in larger values for the kurtosis,
and vice versa, and the SGT distribution is close to the normal distribution, while λ=0, κ=2, and n=∞. We can therefore say that
the normal distribution is not appropriate for oil returns. For the WTI and heating oil futures, the parameter n is upward for the
starting year of the global financial crisis, then downward along with the crisis period. For the gasoline futures, we cannot observe
a significant trend within the crisis period. Yet we still confirm that the fat-tail distribution is more appropriate for the reason that
the parameter n has low values.

Fig. 3 illustrates the kurtosis parameter in the GED distribution for metal futures returns. Similarly, all three parameters κ are
below 2, indicating that the fat-tail exists in themetal returns. However, the trends of the silver and copper assets are very smooth
within the whole empirical period, whereas that of the gold assets is obviously downward. More specifically, the parameter κ in
gold returns is steady and close to 2 in the beginning, and then goes down gradually after 2005. The scaling parameters of the SGT
distribution are shown in Fig. 4. Similar to the oil assets, the skewness parameter λ and the peakness parameter κ are very smooth
and close to 0 and 2, respectively; relatively, the fat-tail parameter n fluctuatesmuchmore than the others. Among them, the trend
of the gold assets is similar to theWTI and heating oil returns; that is, the parameter n is upward for the starting year of the global
financial crisis, then downward along with the crisis period. For the silver assets, the lowest value appears in the crisis period; in
contrast, the parameter n for copper returns is upward slightly, similar to gasoline. The same occurs with the oil assets, and we
confirmed that the fat-tail distribution is more appropriate to metal assets for the reason that the parameter n has low values. This
is also why the forecasting performance with the normal distribution was not better than that with the alternative distributions.

4.3. The results of VaR performance assessment

With regard to the empirical results, we only assess the out-of-sample performance of the VaRmodels because it is, in practice,
a routine procedure for a qualified VaRmodel. In this paper, the predicted one-day-ahead VaR is based on a rolling window out-of-
5 Similar results are shown in terms of spot returns.

image of Fig.�3


6 The authors would like to thank an anonymous referee for suggesting the use of the recursive estimation window. However, we found that there is no
significant difference between the empirical results of these two predicting procedures.

Fig. 4. Kurtosis and skewness parameters for metal futures in the SGT distribution.
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sample procedure.6 The window size is fixed at 1500 observations. More specifically, the procedure was conducted in the
following manner: The first rolling sample included the returns from December 18, 1996 to December 31, 2002. Following Giot
and Laurent (2003b) and Bali et al. (2008), the model was re-estimated every 20 trading days in order to update the distribution
parameters of each model. The predicted one-step-ahead was computed for the next 20 days based on the model estimates;

image of Fig.�4


Table 3
Mean VaR and the failure rates.

Normal distribution Generalized error distribution Skewed generalized
t distribution

Nonparametric distribution

90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%

Panel A. Spot
WTI −3.291 −4.254 −6.062 −3.033 −4.156 −6.510 −2.887 −3.952 −6.565 −3.147 −4.158 −7.321

(0.083) (0.042) (0.017) (0.097) (0.046) (0.010) (0.105) (0.056) (0.012) (0.092) (0.046) (0.008)
Gasoline −3.795 −4.902 −6.979 −3.599 −4.881 −7.528 −3.587 −4.838 −7.685 −3.683 −5.016 −7.336

(0.098) (0.052) (0.017) (0.106) (0.053) (0.012) (0.108) (0.053) (0.009) (0.102) (0.050) (0.016)
Heating −3.268 −4.222 −6.013 −3.132 −4.193 −6.338 −3.058 −4.079 −6.269 −2.991 −4.071 −6.384

(0.079) (0.041) (0.010) (0.087) (0.039) (0.009) (0.092) (0.040) (0.010) (0.096) (0.046) (0.008)
Gold −2.400 −3.097 −4.403 −1.889 −2.715 −4.612 −1.745 −2.513 −4.625 −1.937 −2.811 −4.674

(0.069) (0.048) (0.015) (0.096) (0.055) (0.010) (0.102) (0.056) (0.009) (0.099) (0.056) (0.014)
Silver −2.511 −3.227 −4.571 −2.239 −3.179 −5.308 −2.316 −3.294 −5.503 −2.254 −3.135 −5.498

(0.084) (0.055) (0.025) (0.108) (0.058) (0.019) (0.101) (0.054) (0.016) (0.108) (0.060) (0.017)
Copper −2.155 −2.784 −3.964 −2.118 −2.815 −4.211 −2.000 −2.612 −4.024 −2.269 −3.204 −5.757

(0.108) (0.074) (0.029) (0.112) (0.073) (0.020) (0.123) (0.083) (0.021) (0.108) (0.059) (0.016)
Panel B. Futures

WTI −3.193 −4.124 −5.871 −3.004 −4.044 −6.162 −2.882 −3.891 −6.209 −3.025 −4.204 −6.469
(0.090) (0.044) (0.008) (0.107) (0.048) (0.007) (0.110) (0.058) (0.009) (0.101) (0.045) (0.005)

Gasoline −3.689 −4.754 −6.752 −3.303 −4.544 −7.176 −3.299 −4.491 −7.506 −3.360 −4.622 −7.385
(0.091) (0.045) (0.010) (0.111) (0.053) (0.008) (0.111) (0.055) (0.009) (0.108) (0.050) (0.009)

Heating −3.230 −4.169 −5.929 −2.914 −3.941 −6.056 −2.880 −4.049 −6.198 −2.708 −3.709 −6.029
(0.077) (0.037) (0.011) (0.086) (0.030) (0.005) (0.101) (0.038) (0.007) (0.101) (0.038) (0.006)

Gold −1.481 −1.910 −2.714 −1.367 −1.898 −3.049 −1.353 −1.871 −3.132 −1.368 −1.873 −3.191
(0.100) (0.061) (0.025) (0.117) (0.060) (0.017) (0.114) (0.064) (0.015) (0.117) (0.065) (0.016)

Silver −2.500 −3.215 −4.557 −2.197 −3.084 −5.025 −2.368 −3.337 −5.749 −2.269 −3.204 −5.757
(0.092) (0.059) (0.028) (0.116) (0.066) (0.020) (0.101) (0.055) (0.015) (0.108) (0.059) (0.016)

Copper −2.427 −3.125 −4.436 −2.221 −3.04 −4.788 −2.174 −2.951 −4.830 −2.249 −2.983 −4.908
(0.101) (0.057) (0.023) (0.122) (0.058) (0.019) (0.121) (0.063) (0.018) (0.119) (0.060) (0.019)

Note: The table reports mean VaR estimates and the failure rates (in parentheses) for the alternative VaR models under 90%, 95%, and 99% confidence levels.

Table 4
Unconditional coverage test.

Normal distribution Generalized error
distribution

Skewed generalized
t distribution

Nonparametric distribution

90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%

Panel A. Spot
WTI × O × O O O O O O O O O
Gasoline O O × O O O O O O O O ×
Heating × O O O O O O O O O O O
Gold × O × O O O O O O O O O
Silver × O × O O × O O × O O ×
Copper O × × O × × × × × O O ×

Panel B. Futures
WTI O O O O O O O O O O O ×
Gasoline O O O O O O O O O O O O
Heating × × O O × O O × O O O O
Gold O × × × O × O × × × × ×
Silver O O × × × × O O O O O ×
Copper O O × × O × × × × × O ×

Note: The symbol × (O) indicates that the null hypothesis was rejected (accepted) at the 5% significance level for the LRuc statistics under 90%, 95%, and 99%
confidence levels. The LRuc statistics are asymptotically distributed χ2(1).
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thereafter it was compared with the observed return and both results were recorded for subsequent evaluation using statistical
tests. Next, the estimated sample was rolled forward by omitting the returns for the oldest 20 days and adding the returns for the
latest 20 days. This procedure was repeated until the sample was exhausted.

Table 3 presentsmean VaR estimates and the failure rates for each of the fourmodels under 90%, 95%, and 99% confidence levels
over the entire out-of-sample period from January 2, 2003, to March 30, 2009. These basic statistics can be regarded as the
preliminary understanding of average performance during forecasting period before the implementation of more rigorous VaR
evaluation tests. The results of VaR evaluation tests introduced in the preceding sectionwill be reported in Tables 4–7. These tables
and the discussion below are framed with regard to the distribution-based and nonparametric distribution-based VaR estimates.

As observed in Table 3, except for copper, themean VaR estimate of spot is higher than that of futures. This implies that holding
the spot position of these commodities will bear higher average market risk than holding the futures position, which is dissimilar



Table 5
Conditional coverage test.

Normal distribution Generalized error
distribution

Skewed generalized
t distribution

Nonparametric distribution

90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%

Panel A. Spot
WTI × × × × × O × × O × × O
Gasoline O × × O × O O O O O O ×
Heating × O O O O O O O O O O O
Gold × O O O O O O O O O O O
Silver × × × O × × O × × O × ×
Copper O × × × × × × × × × × ×

Panel B. Futures
WTI × × O O × O O × O O × ×
Gasoline O O O × O O × O × O O O
Heating × × O O × × O O O O O O
Gold O O × O O × O × O O × ×
Silver × × × × × × O × × × × ×
Copper O O × × O × × × × × O ×

Note: The symbol × (O) indicates that the null hypothesis was rejected (accepted) at the 5% significance level for the LRuc statistics under 90%, 95%, and 99%
confidence levels. The LRcc statistics are asymptotically distributed χ2(2).

Table 6
Dynamic quantile test.

Normal distribution Generalized error
distribution

Skewed generalized
t distribution

Nonparametric distribution

90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%

Panel A. Spot
WTI × × × × × × × × × × × ×
Gasoline × × × × × × × × × × × ×
Heating × × O × × O × O O O O O
Gold × O O × O O O O O O × O
Silver × × × O × × O × × O × ×
Copper × × × × × × × × × × × ×

Panel B. Futures
WTI × × × O × × × × × O × ×
Gasoline × O O × × × × × × O O O
Heating × O O × × × O × O O ×
Gold O × × O × × O × × O × ×
Silver O × × × × × O × × × × ×
Copper × × × × × × × × × × × ×

Note: The symbol × (O) indicates that the null hypothesis was rejected (accepted) at the 5% significance level for the DQ statistics under 90%, 95%, and 99%
confidence levels. The DQ statistics are asymptotically distributed χ2(7).
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with the general recognition that futures are riskier than spot. Moreover, for both spot and futures, the mean VaR estimates of oil
commodities are relatively higher than that of metal commodities, where gasoline and silver have the highest market risk among
oil and metal commodities, respectively. At 90% and 95% confidence levels, the normal distribution almost generates the highest
mean VaR estimates among the four VaR models, and normal distribution tends to overestimate real market risk at a 90%
confidence level because the failure rate is lower than 10% for most cases. On the contrary, at a 99% confidence level, the normal
distribution produces the lowest VaR estimates and the failure rate points out the tendency of underestimation for real market
risk. The generalized error distribution underestimates for the spot and the futures of copper and also the futures of silver.
Similarly, the skewed generalized t distribution underestimates both spot and futures of copper, and does so in the nonparametric
distribution for the gold futures. Besides the spot of copper, GED, SGT, and nonparametric distributions perform quite well under
all confidence levels.

4.4. Unconditional and conditional coverage tests

The results for the unconditional (LRuc) and conditional coverage (LRcc) tests are reported in Tables 4 and 5, respectively. The
symbol “×” indicates that the null hypothesis was rejected at the 5% significance level, and the symbol “O” indicates that the test
did not reject the null hypothesis at the 5% significance level. If LRuc is statistically insignificant, it implies that the expected and the
actual number of observations falling below the VaR estimates are statistically the same. Further, rejection of the null hypothesis
indicates that the computed VaR estimates are not sufficiently accurate. According to the LRuc test statistics, VaR models based on
GED, SGT, and nonparametric distributions perform relatively better than the normal distribution for all spot commodities of since



Table 7
Superior predictive ability test for market risk capital.

WTI Gasoline Heating Gold Silver Copper

Panel A. Spot
Skewed generalized t distribution

%trading 73.923 55.230 38.019 44.119 72.903 95.227
Mean 75.855 86.472 67.719 51.515 70.816 51.511
(p-value) (0.511) (0.501) (0.000) (0.527) (0.219) (0.479)

Nonparametric distribution
%trading 26.077 44.770 61.981 55.881 27.097 4.773
Mean 81.964 89.247 65.418 53.377 70.495 74.849
(p-value) (0.000) (0.000) (0.499) (0.005) (0.781) (0.000)

Panel B. Futures
Skewed generalized t distribution

%trading 59.230 22.693 31.345 66.256 36.490 69.361
Mean 64.380 78.756 57.502 39.674 74.898 61.873
(p-value) (0.499) (0.002) (0.001) (0.509) (0.470) (0.498)

Nonparametric distribution
%trading 40.770 77.307 68.655 33.744 63.510 30.639
Mean 65.825 77.703 55.788 40.731 74.849 63.029
(p-value) (0.000) (0.478) (0.481) (0.000) (0.530) (0.000)

Note: This table shows that the percentage of trading days of the benchmarkmodel has a lower capital charge than the competingmodel. Mean and p-value denote
the average market risk capital and the reality check p-value of the Hansen's consistent test for the market risk capital-based loss function. In SPA test, each
competing model has to take turns to be the benchmark model, and the null hypothesis is that none of the models is better than the benchmark. The number o
bootstrap replications to calculate the p-values is 1000 and the dependency parameter q is 0.5.
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GED, SGT, and nonparametric distributions have fewer rejections than a normal distribution. However, for the cases of the 95% and
99% confidence levels, the failure rates of normal, GED, and SGT distributions for the spot price of copper are significantly higher
than the expected failure rates, which is evident from Table 3. Moreover, the performance of the normal distribution at the 99%
confidence level is the worst; this is because of the rejection of all cases except for heating oil and because all models failed to
provide an accurate prediction of the downside risk for silver and copper at the 99% confidence level. On the other hand, with
regard to futures, both the SGT and normal distributions have six rejections; the normal distribution performs better than GED and
nonparametric distributions. However, the number of rejections among these VaR models is rather close. Based on the results of
LRuc test statistics for both spot and futures of all commodities, the SGT and nonparametric distributions both have 10 rejections,
followed by GEDwith 11 rejections, and normal distribution with 16 rejections. Thus, it is evident that the SGT and nonparametric
distributions produce better VaR estimates than other distributions in terms of the total number of rejections.

Since LRuc only counts failure in the backtesting periodwithout considering the dependence of each failure, the LRcc test used in
this paper is a test of correct conditional coverage that simultaneously takes account of both serial independence of failure series
and the correct unconditional coverage. Table 5 presents the results of the conditional coverage test for the 90%, 95%, and 99%
confidence levels. The GED, SGT, and nonparametric distributions behave fairly well for heating oil and gold spots at all confidence
levels; moreover, the SGT distribution performance rather well for gasoline spots.With regard to futures, the null hypothesis of the
LRcc test cannot be rejected when using the normal and nonparametric distributions to calculate VaR estimates of gasoline and
when adopting SGT and nonparametric distributions for computing VaR estimates of heating oil. Based on the results of LRcc test
statistics for both spot and futures of all commodities, the SGT distribution has 16 rejections, nonparametric distribution has 17
rejections, GED has 18 rejections, and normal distribution has 21 rejections.With respect to the total number of rejections, the SGT
distribution produces more favorable VaR estimates as compared with the other distributions.

4.5. Dynamic quantile test

Table 6 presents the results of the out-of-sample VaR performance using the dynamic quantile test statistics given by Engle and
Manganelli (2004). As compared with the results of the unconditional and conditional coverage tests, the dynamic quantile test is
more severe since the number of rejections is much more than those presented in Tables 4 and 5. The SGT distribution passes the
dynamic quantile test at all confidence levels for gold spots, as does the nonparametric distribution for heating oil spots and
gasoline futures. In light of the number of rejections, the VaR estimates generated by SGT and nonparametric distributions perform
better than that generated by normal and GED distributions.

4.6. Regulatory loss function

The abovementioned tests focused on examining the accuracy of failure frequency and the independence of the failure process
for VaR models. However, there may be a large number of VaR models that can pass these statistical evaluation tests. How do risk
managers choose among alternative VaR models? Which one will generate fewer regulatory capital requirements and induce less
opportunity cost of capital? In this section, we employ the two-stage selection procedure given by Sarma et al. (2003), inwhich the
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first stage of model selection involves a statistical accuracy test and the second one includes an efficiency test based on specific loss
functions. The loss function used here is based on the regulatory capital that is earmarked for the trading positions of commercial
banks according to the banks' internal VaR estimates. The regulatory loss function related to market risk capital requirement is
introduced in Eq. (9) and is applied in order to evaluate the relative performance of VaR models within an economic framework.

It must be noted that, based on the results of three abovementioned statistical accuracy tests, the SGT and nonparametric
distributions tended to produce more superior VaR estimates than normal and GED distributions. Thus, in the first stage, the VaR
models based on SGT and nonparametric distributions were selected for the efficiency evaluation test based on a market risk
capital-based loss function. If a certain VaR model has a smaller loss function value, it implies that the likelihood of using this
model for computing the VaR-based market risk capital requirement will be lower than other models.

Table 7 reports the percentage of trading days of the benchmark model has a lower capital charge than the competing
model. The mean and p-values denote the average market risk capital and the reality check p-value of the superior predictive
test (SPA) given by Hansen (2005) for the market risk capital-based loss function. In the SPA test, each competing model is
used as the benchmark model by turns, and the null hypothesis is that none of the competing models is better than the
benchmark. For both spot and futures of all commodities, the SGT distribution has significantly fewer capital requirements than
the nonparametric distribution for seven cases as indicated by the p-values of the SPA test; moreover, the SGT distribution
yields lower capital charges on over 50% of the trading days. Further, the nonparametric distribution performs better than the
SGT distribution with regard to the heating oil spot and gasoline and heating oil futures. With regard to the cases of both spot
and futures of silver, the capital charges generated by these two models are rather close without any significant difference.
From the perspective of percentage of trading days, the SGT distribution has lower capital charges than the nonparametric
distribution in a greater number of days for silver spot, and the situation is reversed for silver futures. Consequently, the SGT
distribution appears to be the most appropriate choice since it enables risk managers to fulfill their purpose of minimizing MRA
regulatory capital requirements.

5. Conclusion

This paper provides a comprehensive analysis using the flexible SGT distribution for modeling six commodity volatilities—WTI
crude oil, gasoline, heating oil, gold, silver and copper—and analyzing the time-varying scaling parameters, including those in the
petroleum and metal markets. It also estimates the VaR within the framework of the GARCH-SGT model. The out-of-sample
forecasting period covers a long period, encompassing both stable and high-fluctuation periods, including the most unsteady
period of the global financial crisis. The empirical results indicate that the forecasted VaR obtained using the SGT distribution
provides themost accurate out-of-sample forecasts for both the petroleum andmetal markets. The estimated time-variation of the
parameters provides evidence for tail fatness of the six return series. The fat-tail parameter in GED is below 2 (normal distribution)
and decreases gradually in the forecasting period. The value is comparatively low during the global financial crisis period.
Furthermore, the skewness and peakness parameter in SGT distribution are very smooth and close to that of the normal
distribution; however, the fat-tail parameter in the SGT distribution is small for all returns, indicating that the fat-tail distribution
is more appropriate than the normal distribution. Except for silver, the fat-tail parameter is upward for the starting year of the
global financial crisis, then downward along with the crisis period.

As in the failure rate, the mean VaR estimates of petroleum commodities are relatively higher than those of the metal
commodities. The mean VaR estimates of spot are higher than those of the futures, except for copper. This implies that holding the
spot position of these commodities will bear higher averagemarket risk than holding the futures position, which is dissimilar with
the general recognition that futures are riskier than spot. With regard to the unconditional and conditional coverage tests, the SGT
distribution produces the most appropriate VaR estimates in terms of the total number of rejections; this is followed by the
nonparametric distribution, generalized error distribution (GED), and finally the normal distribution. Similar to the dynamic
quantile test, the VaR estimates generated by SGT and nonparametric distributions perform better than that generated by normal
and GED distributions. Finally, for the superior predictive test, the SGT and nonparametric distributions are selected to be the
benchmark for the following efficiency evaluation test based on amarket risk capital-based loss function. The results show that the
SGT distribution has significantly lower capital requirements than the nonparametric distribution for most commodities;
however, the nonparametric distribution performs better than the SGT distribution merely for the heating oil spot and gasoline
and heating oil futures. Therefore, the SGT distribution appears to be the most appropriate choice since it enables risk managers to
fulfill their purpose of minimizing MRA regulatory capital requirements.
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